C. Ba-O polyhedror	n'
Interatomic dist	tances (Å)
BaO(1 a + c)	2.85 (1)
Ba-O(3c)	3.02 (1)
Ba-O(1a)	2.88 (1)
Ba-O(3)	2.78 (1)
Ba-O(4)	2.85 (1)
Ba-O(2c)	2.81 (1)
Ba-O(2a+c)	2.88 (1)
Ba-O(4c)	2.92 (1)
Ba-O(5b)	3.22 (1)
D. Hydrogen bond	
O(4)-O(3c)	2·86 (1) Å

A more satisfactory distribution might be obtained by assigning some arbitrary small value to the bonds between barium and bridging oxygen atoms; this would tend to equalize the electrostatic bond strengths of the AI-O bonds and to reduce slightly those of the remaining Ba-OH bonds.

References

AHMED, A. H. M. (1969). Ph.D. Thesis, Department of

CARLSON, E. T., CHACONAS, T. J. & WELLS, L. S. (1950). J. Res. Nat. Bur. Stand. 45, 381.

- CARLSON, E. T. & WELLS, L. S. (1948). J. Res. Nat. Bur. Stand. 41, 103.
- CRUICKSHANK, D. W. J., PILLING, D. E., BUJOSA, A., LOVELL, F. M. & TRUTER, M. R. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis. Oxford: Pergamon Press.
- DALY, J. J., STEPHENS, F. S. & WHEATLEY, P. J. (1963). Monsanto Research S. A. Final Report No. 52.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- THILO, E. & GESSNER, W. (1965). Z. anorg. allgem. Chem. 337, 238.

Acta Cryst. (1970). B26, 1690

Chemistry, Univ. of Aberdeen.

The Crystal and Molecular Structure of a Hydrazone Derivative of 2,2'-Di-(1,4-naphthoquinone)

By Herman L. Ammon*

Division of Natural Sciences, University of California, Santa Cruz, California, and Department of Chemistry, University of Maryland, College Park, Maryland, U.S.A.

AND RAYMOND E. GIBSON

Division of Natural Sciences, University of California, Santa Cruz, California, U.S.A.

(Received 20 May 1969 and in revised form 24 September 1969)

The title compound, $C_{21}H_{12}N_2O_3$, crystallizes in the orthorhombic space group *Pbca* with unit-cell dimensions of a=14.45, b=8.22 and c=25.58 Å, and with eight molecules per unit cell. Three-dimensional X-ray diffraction data were recorded on equi-inclination Weissenberg films using Cu $K\alpha$ radiation, and the 2196 intensities were visually estimated. The structure was solved with the symbolic addition method and has been refined with full-matrix least-squares to an R index of 0.10; anisotropic temperature factors were used for the carbon, nitrogen and oxygen atoms and the hydrogen atoms were included with isotropic temperature factors. The molecule is reasonably planar and structural requirements have produced two close intramolecular contacts, $O \cdots H$ and $CH_3 \cdots O$. Bond distances in the heterocyclic portion of the molecule show the effects of π -electron delocalization.

Introduction

The reaction of 1,4-naphthoquinone (I) with hydrazine hydrate does not occur in the usual way to yield the

familar ketonic hydrazone derivative. Hand & Cohen (1967) have reported that the naphthoquinone 'hydrazone' and the compound isolated from the reaction of hydrazine hydrate with 2,2'-di-(1,4-naphthoquinone) (II) are identical, and they have shown that the material is the cinnoline derivative (IIIa). Our investigation of the structure of (III) was stimulated by some recent

^{*} Address inquiries to this author at the University of Maryland.

work on the crystal structure of compound (II) (Ammon, Sundaralingam & Stewart, 1969). The 'hydrazone' must be held in a rigid, planar configuration by the heterocyclic ring and the nonbonded interactions caused by such an arrangement should give rise to some interesting structural features. A determination of the crystal and molecular structure of the of the *N*-methyl derivative (III*b*), 6-methylbenzo[g]naphtho[1,2-c]cinnoline-7,12,14-trione, is reported in this paper.

Experimental

A generous sample of (IIIb) was obtained from Dr T. Cohen. The compound crystallized from anisole as blue-black, rectangular prisms. The crystals appeared to be constructed of small, but clearly visible, blocks and were somewhat fragile. Although recrystallization from anisole and other organic solvents was tried, in addition to high vacuum sublimation, we were not able to improve the crystal quality or grow larger specimens.

Cell constants were measured from rotation and Weissenberg photographs (Cu K α , $\lambda = 1.5418$ Å, calibrated with NaCl, a = 5.6396 Å) of a sample mounted parallel to the long prism axis (b). The compound crystallizes in the orthorhombic system and unit cell parameters are

$$a = 14.45_1, b = 8.22_1, c = 25.58_1$$
 Å.

For C₂₁H₁₂N₂O₃, mol. wt. 328·3 and Z=8, $\varrho_{X-ray} = 1.487$ g.cm⁻³; $\varrho_{meas} = 1.485$ g.cm⁻³.* Systematic absences, 0kl absent for k odd, h0l absent for l odd and hk0 absent for h odd, were consistent with space group

Pbca. None of the specimens examined proved to be suitable for diffractometry: the crystals suffered from a substantial mosaic spread (peak widths of 5–6° in 2θ were observed at low 2θ) and all of the specimens were multiple crystals.

Intensity data subsequently were recorded using Nifiltered Cu Ka radiation on equi-inclination Weissenberg photographs. The h0l - h7l levels were recorded with a crystal that was 0.1 mm square by 0.2 mm long, the 0kl - 2kl levels were recorded with a crystal that was ca. 0.08 mm square by 0.1 mm long, and the intensities were visually estimated by comparison with a calibrated film scale. Although the crystal splitting was quite evident in certain regions of the a-axis photographs, we were able to estimate intensities in one octant where the spots were not noticeably split. Extended spot shape corrections (Lonsdale, 1964; the crystal to source distance was measured in the way described by Singh & Ramaseshan, 1967) were applied and the data were reduced using a set of IBM 1130 programs (Ammon, 1967). The data from the a and baxes were scaled together using the 'shortest path' method of Fox & Holmes (1966). Of the 2196 data (ca. 3473 data within the Cu sphere) measured out to a sin θ of ca. 0.86, 1263 (58%) were observed; the unobserved data were coded as such and given an intensity equal to the smallest observable intensity on the appropriate photographic level.

Table 1. Starting set of reflections for construction of the phase pyramids

Reflection	Ε	Phase	
9,0,14	3.123	+)	
0,2,29	3.120	+ }	origin
11,3,18	3.524	+ j	
0,0,26	3.750	a)	
14,0, 0	3.340	b	
0,2,20	3.167	c	arbitrary
12,3,19	4·279	d (aioitiaiy
0,6,13	2.939	е	
0,4,16	2.896	f J	

Table 2. Summary criteria for the two best phase solutions

Criterion	No. 6	No. 16
No. of + signs	93	97
No. of – signs	101	100
No. undetermined	14	11
No. correct Σ_2 triples	1998	2092
No. incorrect Σ_2 triples	274	174

The data were scaled and normalized structurefactor amplitudes (|E|) were computed using the X-ray 67 (1967) subprogram DATFIX. The structure was solved by the symbolic addition procedure (Karle & Karle, 1966), using the PHASER system of programs (Ammon, 1964) modified to run on an IBM 360/40 computer. We first used the 155 |E|'s ≥ 2.0 (1128 \sum_2 triples) and the 'symbolic' phase pyramid generated by PHASER. The starting set of reflections necessary for the phase pyramid construction was readily narrowed

^{*} This density was measured by Dr H. Berman, who also made an initial determination of the cell parameters and space group (see Hand & Cohen, 1967).

1692

Table 3. Structure factor list

The data are listed in blocks of constant h and k. Within each block the three columns are l, $10F_0$ and $10F_c$. An 'L' designates the unobserved data; an 'E' designates those reflections which were not included in the final cycles of least-squares refinement.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14 100 Ff 14 120 100 15 23 -124 15 23 -16 16 107 -16 17 701 -16 19 104 -764 19 104 -164 10 104 -164 10 104 -164 10 11 -167 21 471 49 22 101 98 11 174 45 2 24 -07 2 24 -07	I FN FF, 10 244 236 10 102 - 17 21 12 - 45 21 22 21 H + 2, K 2 3 1 75 - 256 1 75 - 446 3 307 - 446 3 307 - 446 3 307 - 715 5 508 406 7 207 - 175	L FD FC I FD FC 9 100° -113 12 AAU AA $H = A_{1} Y = X$ 14 611 -44 1 $H = A_{2} Y = X$ 14 611 -44 0 778 724 15 140 130 0 778 724 15 140 130 1 131 -55 14 121 -105 1 451 -55 14 121 -105 3 661 -36 19 99 -76 6 671 -74 H = 15, C = X 5 156 159 2 700 54 9 7 701 31 1 711 25 6 251 -2332 2 700 54 9 101 79 7 4 40 84 11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 с 270 200 с 400 - 4641 с 411 100 с 711 100 г 711	$ \begin{array}{c} \mathbf{x} \mathbf{x} \mathbf{x} \\ \mathbf{x} \mathbf{x} \\ $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 4.401 117 7 4.65 4.18 0 152 128 10 313 -284 11 73 52 12 242 227 13 651 -285 14 23 207 15 278 -190 16 711 244 17 1317 244 19 244 214 201 134 -129 21 80L -176 22 301 -174 23 701 14 24 771 30 25 741 32	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} 4 & 333 & 372 & 12 & 104 & 97 \\ 10 & 221 & -227 & 16 & 114 & -113 \\ 12 & 492 & -785 & 18 & 110 & 777 \\ 13 & 14 & 97 & -785 & 18 & 110 & 777 \\ 16 & 696 & 657 & 720 & 107 & -677 \\ 18 & 149 & 137 & & 71071 & 746 \\ 0 & 200 & 187 & 4 & 1064 & 18 \\ 2 & 217 & -177 & 6 & 1064 & 49 \\ 4 & 597 & 544 & 107 & 974 & -77 \\ 6 & 397 & 544 & 107 & 974 & -77 \\ 6 & 397 & 544 & 107 & 974 & -77 \\ 10 & 210 & -177 & 6 & 1064 & 19 \\ 12 & 310 & -177 & 6 & 1064 & 1064 \\ 12 & 310 & -177 & 6 & 1064 & 1064 \\ 12 & 310 & -177 & 6 & 1064 & 1064 \\ 12 & 310 & -177 & 6 & 1064 & 1064 \\ 12 & 310 & -177 & 6 & 1064 & 1064 \\ 12 & 310 & -177 & 6 & 1064 & 1064 \\ 12 & 310 & -177 & 6 & 1064 & 1064 \\ 12 & 310 & -177 & 6 & 1064 & 1064 \\ 12 & 310 & -177 & 6 & 1064 & 1064 \\ 12 & 310 & -177 & 6 & 1064 & 1064 \\ 12 & 310 & -177 & 6 & 1064 \\ 12 & 310 & -177 & 6 & 1064 \\ 12 & 310 & -177 & 6 & 1064 \\ 12 & 310 & -177 & 6 & 1064 \\ 12 & 310 & -177 & 6 & 1064 \\ 12 & 310 & -177 & 6 & 1064 \\ 12 & 310 & -177 & 6 & 1064 \\ 12 & 310 & -177 & 6 & 1064 \\ 12 & 310 & -177 & 6 & 1064 \\ 12 & 310 & -177 & 6 & 1064 \\ 12 & 310 & -177 & 6 & 1064 \\ 12 & 310 & -177 & 6 & 1064 \\ $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 20, \ 9, 94, \ -84, 94, \ -84, 97, \ -84, 97, \ -94$	26, 71[1, -35 27, 681, -5 28, 601, 70 4, 4, -24 10, 124, 142 10, 124, 142 11, 51 , -20 14, -111 1, 51 , -20 1, 444 , -156 3, 243 , 227 4, 226 , 216 5, 102 , 71 6, 725 , -810 7, 7055 , -167 9, 571 , -50 10, 256 , -261 11, 627 , 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1 & 1 & 10 & -103 \\ 15 & 671 & -70 \\ 16 & 652 & 61 \\ 17 & 581 & 68 \\ 19 & 581 & 68 \\ 19 & 581 & 20 \\ 20 & 500 & 67 \\ 21 & 64 & -74 \\ 22 & 101 & 73 \\ 1 & 14 & 68 \\ 2 & 101 & 73 \\ 1 & 14 & 1690 \\ 3 & 110 & -135 \\ 3 & 119 & -135 \\ 3 & 119 & -135 \\ 3 & 119 & -135 \\ 3 & 119 & -135 \\ 3 & 119 & -135 \\ 3 & 119 & -135 \\ 3 & 119 & -135 \\ 3 & 119 & -135 \\ 1 & 151 & -695 \\ 5 & 751 & 153 \\ \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 731 -32 9 711 -54 10 704 -54 12 674 -67 13 654 -67 14 631 -67 15 601 -71 15 504 -71 15 704 -16 15 714 -16 17 74 -17 20 74 -57 20 74 -57 20 74 -57 20 74 -20 1 714 -4 2 714 -2 2 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 36 -87 H - 16, C = 2 O - 631 - 8 1 70 - 68 2 100 - 75 3 - 67 3 - 67 3 - 67 3 - 67 1 - 7 4 - 67 1 - 7 4 - 67 1 - 7 4 - 67 1 - 7 4 - 7 5 - 61 1 - 7 4 - 7 5 - 61 1 - 7 5 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} 1 & 901 & -99 & 29 & 411 & 87 \\ 7 & 90 & 14 & 50 & 66 & -75 \\ 8 & 724 & -268 & 49 & 51 & 51 & 51 \\ 8 & 724 & -73 & 0 & 351 & 0 \\ 7 & 187 & -73 & 0 & 351 & 0 \\ 7 & 187 & -197 & 1 & 56 & 54 \\ 9 & 771 & -70 & 134 & -176 \\ 9 & 771 & -70 & 134 & -176 \\ 10 & 761 & 72 & 4 & 212 & -276 \\ 11 & 751 & 50 & 276 & -278 \\ 12 & 155 & 51 & 56 & -278 \\ 13 & 751 & -69 & 7 & 468 & -49 \\ 13 & 561 & 10 & 531 & 15 \\ 15 & 661 & -57 & 113 & -178 \\ 16 & 631 & 56 & 10 & 531 & 15 \\ 17 & 601 & -71 & 11 & 155 & -178 \\ 18 & 564 & -71 & 11 & 125 & -74 \\ 19 & 544 & -71 & 11 & 125 & -74 \\ 19 & 544 & -71 & 11 & 125 & -74 \\ 10 & 514 & -71 & 11 & 125 & -74 \\ 10 & 514 & -71 & 11 & 125 & -74 \\ 10 & 514 & -71 & 11 & 125 & -74 \\ 10 & 514 & -71 & 11 & 125 & -74 \\ 10 & 514 & -71 & 11 & 125 & -74 \\ 10 & 514 & -71 & 11 & 125 & -74 \\ 10 & 514 & -71 & 11 & 125 & -74 \\ 10 & 514 & -71 & 11 & 125 & -74 \\ 10 & 514 & -71 & 11 & 125 & -74 \\ 10 & 514 & -71 & 11 & 125 & -74 \\ 10 & 514 & -71 & 11 & 125 & -74 \\ 10 & 514 & -71 & 11 & 125 & -74 \\ 10 & 514 & -71 & 11 & 125 & -74 \\ 10 & 514 & -71 & -74 & -74 \\ 10 & 514 & -71 & -74 & -74 \\ 10 & 514 & -71 & -74 & -74 \\ 10 & 514 & -71 & -74 & -74 \\ 10 & 514 & -71 & -74 & -74 \\ 10 & 514 & -71 & -74 & -74 \\ 10 & 514 & -71 & -74 & -74 \\ 10 & 514 & -71 & -74 & -74 \\ 10 & 514 & -71 & -74 & -74 \\ 10 & 514 & -71 & -74 & -74 \\ 10 & 514 & -71 & -74 & -74 \\ 10 & 514 & -71 & -74 & -74 \\ 10 & 514 & -71 & -74 & -74 \\ 10 & -71 & -74 & -74 & -74 \\ 10 & -74 & -74 &$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

HERMAN L. AMMON AND RAYMOND E. GIBSON

Table 3 (cont.)

down to the nine reflections shown in Table 1. Subsequent calculations utilized the 208 |E|'s ≥ 1.805 (this number of reflections gave 2400 \sum_2 triples, the storage limit of *PHASER* on a 131K by the IBM 360/40 computer). Although there were some strong relationships which could have been used to reduce the number of 'arbitrary' signs (Table 1) to three, we chose to treat all six as unknowns and 64 (2⁶) sign pyramids were computed. It had been our previous experience (*e.g.* Ammon & Jensen, 1967; Ammon & Sundaralingam, 1966) that the correct solution often could be pinpointed by the use of several simple criteria: *e.g.* relative number of + and - phases, number of undetermined phases, and number of correct and incorrect

 \sum_2 triples. Of the 64 solutions, nos. 6 and 16 were superior to all of the others, and of these two, the latter appeared to be the single 'best' solution (Table 2). Using the *PHASER* subprogram *ADDPHAS*, the initial set of 197 signs from no. 16 was expanded to 850 signs ($|E| \ge 0.5$); an *E* map computed with these phases did not reveal the structure.

Frequently, the starting sets of phases for the few 'best' solutions differ from each other only in the phases of one or two reflections, and the generated sets of phases are virtually identical. A comparison of the 194 phases common to solutions 6 and 16 revealed that the sets of signs were different for 106 reflections. The 194 signs from no. 6 were then expanded to include the |E|'s from 1.8–1.3. From these 204 additional data, 171 new signs were accepted according to the probability criteria, and an E map was calculated with the 365 terms. All 26 of the carbon, nitrogen and oxygen atoms were clearly discernible from this synthesis and a subsequent structure factor calculation gave an R ($R = \sum |F_o| - |F_c| / \sum |F_o|$) of 0.31. A comparison of the original determined phases with those obtained from the fully refined structure showed that 3 of the original 194, and 9 of the second set of 171, were incorrect.

All least-squares computations were done using the X-ray 67 (1967) subprogram ORFLS, which collects the full matrix of the normal equations. Although all of the carbon, nitrogen and oxygen parameters could be varied simultaneously with the program in the isotropic temperature factor mode, computer storage limitations permitted simultaneous refinement of only 12 atoms with anisotropic temperature factors. Thus one overall 'cycle' of anisotropic refinement in which the

positional and thermal parameters for 12 atoms were varied during each cycle. The quantity minimized was $\sum w(F_o - F_c)^2$. During the final cycles of refinement, a Hughes (1941) weighting scheme was applied $(4F_{\min} =$ 36.0); the unobserved data were given unit weights if $|F_c| > |F_o|$ and zero weights if $|F_c| \le |F_o|$. Hydrogen atoms were located from a difference synthesis and were refined with individual isotropic temperature factors. The average and maximum parameter shifts from the last cycle of heavy atom refinement were 0.119σ and 0.409σ and the R index was 0.10. For 73 of the 933 unobserved reflections, the calculated structure amplitudes were larger that the corresponding minimum observed amplitudes. The atomic scattering factors used were carbon, nitrogen and oxygen (Berghuis, Haanappel, Potters, Loopstra, MacGillavry & Veenendaal, 1955); hvdrogen (Stewart, Davidson & Simpson, 1965). The measured and calculated structure factors are given in Table 3.

The atomic coordinates and thermal parameters are given in Table 4; bond lengths and angles between the

Table 4. Fractional coordinates and temperature factors (Å²) for the carbon, oxygen, nitrogen and hydrogen atoms

Estimated standard deviations are given in parentheses.

The anisotropic thermal parameters are in the form $\exp\left[-0.25(h^2B_{11}a^{*2}\dots 2klB_{23}b^*c^*)\right]$.

	x	у	Z	$B \text{ or } B_{11}$	B ₂₂	B ₃₃	B_{12}	B ₁₃	B ₂₃
O(7)	0.0081(3)	0.2192(9)	0.4510(2)	2.6(2)	16.9 (6)	9.2(4)	-0.2(3)	0.8(2)	-6.7(4)
O(12)	0.3744(2)	0.2656(5)	0.4414(2)	2.9(2)	7.1(3)	$3.\bar{8}(2)$	-0.1(2)	0.2(1)	1.6(2)
O (14)	0.5080 (2)	-0.0936 (6)	0.3213(2)	2.3(2)	9.2 (3)	4.8 (2)	0.0(2)	$1 \cdot 1$ (2)	-2.1(2)
N(5)	0.1384(3)	-0.0272(6)	0.3220(2)	3.2(2)	4.7(3)	3.9 (3)	0.0(2)	-0.9(2)	-0.1(2)
N(6)	0.0972 (3)	0.0541 (6)	0·3717 (2)	2.7 (2)	5.5 (3)	4·0 (3)	0·2 (2)	-0.2(2)	-0.5(2)
C(1)	0.4016 (4)	-0.2296(8)	0·2400 (3)	4.8 (3)	4·5 (3)	4·7 (3)	0.3(3)	1.1(3)	-0.3(3)
C(2)	0.3441 (5)	-0·2902 (9)	0.2017(3)	6·2 (4)	5.8 (4)	3.5 (3)	-0.3(3)	0.9 (3)	-1.0(3)
C(3)	0.2492 (5)	-0.2621(9)	0.2041(3)	5.7 (3)	6.2 (4)	3.7 (3)	-0.1(3)	-0.1(3)	-0.7(3)
C(4)	0.2104 (4)	-0.1796 (8)	0.2450 (3)	4.3 (3)	4.7 (3)	3.7 (3)	0.1(2)	-0.8(2)	-0.5(3)
C(4a)	0.2672 (4)	-0.1136 (7)	0.2848(2)	3.9 (3)	4.0 (3)	2.7 (3)	0.2 (2)	-0.3(2)	0.0 (2)
C(4b)	0.2292 (3)	-0.0249(7)	0.3285(2)	3.0 (2)	4.1 (3)	3.2 (3)	-0.2(2)	0.2 (2)	-0.0(2)
C(6)	-0.0061 (4)	0.0227 (10)	0.3698 (3)	2.1 (2)	9.1 (5)	9.1 (5)	-0.4 (3)	0.6 (3)	- 3·4 (4)
C(6a)	0.1439 (4)	0.1369 (7)	0.4083 (2)	3.2 (2)	4.0 (3)	4.0 (3)	0.2 (2)	-0·7 (2)	0.4 (2)
C(7)	0.0926 (4)	0.2223 (9)	0·4494 (3)	3.9 (3)	6.6 (4)	4.7 (4)	0.4 (3)	0.3 (3)	0.2 (3)
C(7a)	0.1430 (4)	0.3098 (8)	0.4904 (2)	4.1 (3)	5.0 (3)	3.2 (3)	0.8 (2)	0.4 (2)	0.3(3)
C(8)	0.0939 (4)	0.3865 (8)	0.5307 (3)	4.2 (3)	5.2 (5)	4.3 (3)	1.0 (3)	0.8 (3)	0.7 (3)
C(9)	0.1437 (5)	0.4687 (9)	0.5690 (3)	6.3 (4)	5.7 (4)	4.0 (4)	0.9 (3)	1.1 (3)	0.1(3)
C(10)	0.2405 (5)	0.4789 (8)	0.5678 (2)	6.3 (4)	5.5 (4)	3.4 (3)	1.2 (3)	0.6 (3)	0.6(3)
C(11)	0.2874 (4)	0.4011 (8)	0.5270 (2)	4.8 (3)	4.6 (3)	2.8(2)	0.0(3)	0.4(2)	-0.2(2)
C(11a)	0.2389(4)	0.3222(7)	0.4883(2)	$4 \cdot 1 (3)$	4.1(3)	3.1(3)	$1 \cdot 1 (2)$	0.4(2)	0.2(2)
C(12)	0.2915(3)	0.2407(8)	0.4444(2)	2.8(2)	$5 \cdot 1 (3)$	3.7 (3)	0.3(2)	-0.2(2)	0.8(3)
C(12a)	0.2417(4)	0.1426(7)	0.4060(2)	3.0 (2)	4.1 (3)	2.5(2)	0.7(2)	0.5(2)	0.8(2)
C(12b)	0.2885(3)	0.0538 (7)	0.3662(2)	2.9 (2)	3.6 (3)	3.3 (3)	-0.1(2)	0.0(2)	0.2(2)
C(14)	0.4248(4)	-0.0662 (8)	0.3219(2)	3.4 (2)	5.0(3)	4.0(3)	0.5(2)	0.3(2)	0.1(3)
C(14a)	0.3632(4)	-0.13/1(7)	0.2814(2)	3.7(3)	4.3 (3)	2.5 (3)	-0.2(2)	0.6 (2)	0.1(2)
H(1)	0.463(3)	-0.256(5)	0.237(2)	3.0 (2)					
H(2)	0.389(4)	-0.381(8)	0.181(2)	8.0 (1)					
H(3)	0.209(4)	-0.360(9)	0.188(3)	8.0 (2)					
$\Pi(4)$	0.133(3)	-0.128(9)	0.248(3)	10.0(3)					
$\Pi(0a)$	-0.003(3)	0.028(0)	0.310(2)	3.0(2)					
$\Pi(00)$	-0.046(0)	-0.007(11)	0.379(3)	12.0(2)					
H(0C)	-0.043(3)	0.104(10) 0.271(0)	0.577(3)	10.0(1)					
H(0)	0.100(4)	0.371(9)	0.529(3)	9.0 (2) 8.0 (3)					
H(10)	0.260(4)	0.477(0)	0.599(2)	150(3)					
H(11)	0.209(7)	0.470(12)	0.506(3)	10.0(2)					
H(13)	0.422(3)	0.095(6)	0.381(2)	4.0(2)					
$\begin{array}{c} C(12a) \\ C(12b) \\ C(14) \\ C(14a) \\ H(1) \\ H(2) \\ H(3) \\ H(4) \\ H(6a) \\ H(6b) \\ H(6c) \\ H(6c) \\ H(8) \\ H(9) \\ H(10) \\ H(10) \\ H(11) \\ H(13) \end{array}$	$\begin{array}{c} 0.2417 \ (4) \\ 0.2885 \ (3) \\ 0.4248 \ (4) \\ 0.3632 \ (4) \\ 0.463 \ (3) \\ 0.389 \ (4) \\ 0.209 \ (4) \\ 0.133 \ (5) \\ -0.003 \ (3) \\ -0.048 \ (6) \\ -0.045 \ (5) \\ 0.017 \ (5) \\ 0.100 \ (4) \\ 0.269 \ (7) \\ 0.348 \ (5) \\ 0.422 \ (3) \end{array}$	0.1426 (7) 0.0538 (7) -0.0662 (8) -0.1371 (7) -0.256 (5) -0.381 (8) -0.360 (9) -0.158 (9) 0.028 (6) -0.067 (11) 0.104 (10) 0.371 (9) 0.499 (8) 0.544 (12) 0.420 (10) 0.095 (6)	0.4060 (2) 0.3662 (2) 0.3219 (2) 0.2814 (2) 0.188 (3) 0.248 (3) 0.316 (2) 0.377 (3) 0.377 (3) 0.529 (3) 0.599 (2) 0.591 (4) 0.506 (3) 0.381 (2)	$3 \cdot 0$ (2) $2 \cdot 9$ (2) $3 \cdot 4$ (2) $3 \cdot 7$ (3) $3 \cdot 0$ (2) $8 \cdot 0$ (2) $10 \cdot 0$ (3) $5 \cdot 0$ (2) $12 \cdot 0$ (2) $10 \cdot 0$ (1) $9 \cdot 0$ (2) $8 \cdot 0$ (2) $15 \cdot 0$ (2) $10 \cdot 0$ (1) $4 \cdot 0$ (2)	4·1 (3) 3·6 (3) 5·0 (3) 4·3 (3)	2.5 (2) 3.3 (3) 4.0 (3) 2.5 (3)	0.7 (2) -0.1 (2) 0.5 (2) -0.2 (2)	0.5 (2) 0.0 (2) 0.3 (2) 0.6 (2)	0.8 (2 0.2 (2 0.1 (3 0.1 (2

carbon, nitrogen and oxygen atoms are shown in Fig. 1; bond lengths and angles involving the hydrogen atoms are reported in Tables 5 and 6.

Table 5. Bond lengths and estimated standard deviations to hydrogen

	Length	e.s.d.
C(1) - H(1)	0∙92 Å	0∙04 Å
C(2) - H(2)	1.12	0.06
C(3) - H(3)	1.08	0.07
C(4)—H(4)	1.13	0.07
C(6) - H(6a)	1.39	0.05
C(6) - H(6b)	0.98	0.09
C(6) - H(6c)	0.89	0.08
C(8) - H(8)	1.12	0.07
C(9) - H(9)	1.02	0.06
C(10)-H(10)	0.89	0.10
C(11)-H(11)	1.04	0.07
C(13)-H(13)	0.90	0.05

Discussion

With the exception of O(12), O(14) and the methyl carbon, all of the atoms in a molecule are reasonably coplanar and deviate on the average 0.073 Å from the mean molecular plane. Least-squares planes were calculated for each of the six-membered rings and for several combinations of rings, and in all cases examined the groups of atoms showed significant deviations from planarity.* Of the six-membered rings, the atoms in

* The least-squares planes were computed with the programs of Ahmed, Hall, Pippy & Saunderson (1967). The χ^2 quantity ($\chi^2 = \sum_{i=i}^{n} d_i 2 / \sigma_i^2$, where d_i and σ_i refer to the *i*th atom's distance from the plane and the standard deviation of the distance) was computed for each plane and used as a statistical test of coplanarity.

the two benzene rings showed the highest degrees of coplanarity.

Bond lengths in the central portion of the molecule, depicted by structure (IV), differ substantially from the idealized values for single and double bonds. With the expection of the C(14)–O(14) length of 1.223 Å, which is normal for a ketonic carbonyl group, all of the bonds written in (IV) as formal double bonds are longer than one would expect for these bond types. In a similar way, all of the formal single bonds appear to be shorter than structure (IV) would predict. It is tempting to speculate that canonical forms (V) and (VI) may make a large contribution to the ground state

resonance hybrid and thus are responsible for these bond length discrepancies. The distances found for the C=N-N-C moiety are close to those observed in other molecules which show substantial π -electron delocalization, *e.g.* 1,2,4-triazole (Goldstein, Ladell & Abowitz, 1969) and 2-methyl-3-aza-5-trifluoracetyl-

Fig. 1. Bond lengths (Å, larger numbers) and angles (°) for the carbon, oxygen and nitrogen atoms. Two close intramolecular approaches are also shown. E.s.d.'s in lengths and angles range from 0.006-0.010 Å and 0.5-0.6°, respectively.

2*H*-2-pyrindine.[†] Correction of the C(14)–O(14) bond length for the riding motion of one atom upon another (Busing & Levy, 1964), increased the distance from 1.223 to 1.248 Å.

Most of the other bond lengths in (IIIb) have normal values. The average distances in the two benzene rings are 1.396 Å and 1.393 Å.

Perhaps the most interesting structural feature in this molecule arises from the juxtaposition of the methyl and oxygen substituents on the cinnoline moiety This arrangement is responsible for the $C(6) \cdots O(7)$ approach of 2.64 Å, which is *ca*. 0.8 Å shorter than the sum of the van der Waals radii of methyl and

† Bond distances in this pyrindine derivative suggest that the dipolar structure shown below is important to the ground state structure of the molecule (Ammon, Watts, Anderson, Forkey, Grina & Johnson, 1970).

The ultraviolet and visible spectral properties of compounds like (IV) have been attributed to transitions involving dipolar structures (e.g. (V) and (VI); Hand & Cohen, 1967).

oxygen (3.4 Å). The strain created by this interaction is evident in the two exocyclic angles at N(6) (127.3° and 108.9°); an increase in the C(6)–N(6)–C(6a) angle by 9.2°, and concomitant decrease in C(6)–N(6)–N(5), from the conformation with two equal exocyclic anles of 118.1°, has permitted an increase in the methyloxygen distance of 0.24 Å (from 2.40 Å). This close approach is probably also responsible for the 0.13 Å displacement of the methyl group from the mean plane of O(7)–C(7)–C(6a)–N(6)–N(5) and for the CH₃–N bond length, 1.515 Å, which is about 0.04 Å longer than the values usually found for the C(sp^3)–N linkage.

The bond length and angles of the carbonyl group appear to show little effect of the methyl-oxygen interaction. However, the magnitude of B_{22} for O(7), 16.9 Å², is considerably larger than the B's for any of the other atoms. This observation, in conjunction with the relatively small angle between the b axis and the normal to the molecular plane, suggests that the size of the term is not due to any large thermal motion of the oxygen atom, but to a positional disorder of the atom.* The disorder could be caused by the methyloxygen interaction which forces the oxygen atom to lie above the methyl group in some molecules and

* We are grateful to a referee for pointing out this possibility.

Fig. 2. A drawing of a portion of the unit cell viewed along the b axis. The nine hydrogen atoms which are linked to trigonal carbon are shown at their idealized positions. The observed positions of H(11) and H(2) are also shown with dashed lines from C(11) and C(2). O \cdots H intermolecular contacts discussed in the text are designated with dashed lines. The relative positions of the molecules are: A at x, y, z; B at $\frac{1}{2} + x$, $\frac{1}{2} - y$, 1-z; C at 1-x, $\frac{1}{2} + y$, $\frac{1}{2} - z$; D at $\frac{1}{2} + x$, y, $\frac{1}{2} - z$. The dashed line separating C and D shows one position of the b-glide plane.

1697

Table 6. Bond angles and estimated standard deviations to hydrogen

	Angle	E.s.d.		Angle	E.s.d.
H(1) - C(1) - C(2)	116·0°	3·0°	H(6a)-C(6)-H(6c)	101·0°	5.0°
H(1) - C(1) - C(14a)	124.0	3.0	H(6b)-C(6)-H(6c)	97.0	7.0
H(2) - C(2) - C(1)	103.0	3.0	H(8) - C(8) - C(7a)	115.0	4·0
H(2) - C(2) - C(3)	134.0	3.0	H(8) - C(8) - C(9)	126.0	4.0
H(3) - C(3) - C(2)	113.0	4.0	H(9) - C(9) - C(8)	109.0	4·0
H(3) - C(3) - C(4)	116.0	4.0	H(9) - C(9) - C(10)	128.0	4.0
H(4) - C(4) - C(3)	123.0	4·0	H(10)-C(10)-C(9)	119.0	6.0
H(4) - C(4) - C(4a)	117.0	4 ∙0	H(10)-C(10)-C(11)	122.0	6.0
H(6a)-C(6)-N(6)	90.0	2.0	H(11)-C(11)-C(10)	137.0	4·0
H(6b)-C(6)-N(6)	137.0	5.0	H(11)-C(11)-C(11a)	97.0	4·0
H(6c)-C(6)-N(6)	119.0	5.0	H(13)-C(13)-C(12b)	119.0	3.0
H(6a) - C(6) - H(6b)	106.0	5.0	H(13)-C(13)-C(14)	118.0	3.0

below the methyl group in other molecules. The r.m.s. amplitude of vibration of O(7) normal to the O(7)–C(7)-C(6a)-N(6)-C(6) plane is 0.5 Å.

Another short intramolecular distance is observed between H(13) and O(12). The $H \cdots O$ separation of 2.20 Å, which is appreciably less than the 2.6 Å sum of the hydrogen and oxygen van der Waals radii, is decreased to the very low value of 2.12 Å when the observed C(13)-H(13) distance of 0.90 Å is corrected to the more normal C-H length of 1.05 Å. In view of this short $H \cdots O$ approach and the fact that the hydrogen atom is linked to carbon, the question can be raised whether the $H \cdots O$ interaction is attractive (*i.e.* a hydrogen bond) or repulsive. Unfortunately, the standard deviations in the C-C-H angles are so large as to make any conclusions based on these angles extremely tenuous. The difference in the distances of H(13) and O(12) from the mean plane of the three central rings is 0.5 Å and the C(13)-H(13)...O(12) angle is 124°.

Fig. 2 shows part of the unit cell viewed along b. The average molecular plane intersects the ac plane at an angle of about 33°, and the long axis of the molecule is almost parallel to the bc plane. The molecules are located at ca. $\frac{1}{4}$ and $\frac{3}{4}$ in x, and thus are cut by the *b*-glide plane which is approximately normal to the molecular plane. The b glide transforms one molecule (at x, y, z) into a second molecule (at $\frac{1}{2} - x$, $\frac{1}{2} + y, z$), which is almost directly above the first one (e.g. C and D in Fig. 2), and leads to an arrangement in which the closest intermolecular contacts along bare between parallel rings. Assuming that the length of the b axis is solely dictated by these contacts, and taking into account the 33° angle between b and the plane of the molecule, the van der Waals 'thickness' of the molecule was computed as 3.45 Å.

The intermolecular contacts between hydrogen and oxygen were evaluated using (a) the hydrogen positions obtained from least-squares refinement, and (b) idealized hydrogen positions for the nine atoms linked to trigonal carbon (the C-H distances were set to, 1.05 Å and the C-H vectors were assumed to bisect the appropriate C-C-C angles). Using the idealized hydrogens, only two H···O contacts were found to be

shorter than the 2.6 Å sum of the hydrogen and oxygen van der Waals radii: $O(14) \cdots H(9)$ and $O(12) \cdots H(8)$ were both 2.54 Å (between molecules A and B in Fig. 2). The observed $O(14) \cdots H(2)$ distance of 2.30 Å, between molecules A and C, was calculated at 2.63 Å for the idealized case.

We gratefully acknowledge financial support of this work by grants from the Computer Center, University of California at Santa Cruz, and the National Science Foundation (GP-15791).

References

- AHMED, F. R., HALL, S. R., PIPPY, M. E. & SAUNDERSON, C. P. (1967). NRC Crystallographic Programs for the IBM/360 System. Division of Pure Physics and Pure Chemistry, National Research Council, Ottawa, Canada.
- AMMON, H. L. (1964). PHASER: A System of Programs for the Application of the Symbolic Addition Procedure. Unpublished work.
- AMMON, H. L. (1967). X-ray Crystallography Programs for the IBM 1130 Computer. Unpublished.
- Аммон, H. L. & Jensen, L. H. (1967). Acta Cryst. 23, 805.
- AMMON, H. L. & SUNDARALINGAM, M. (1966). J. Amer. Chem. Soc. 88, 4794.
- AMMON, H. L., SUNDARALINGAM, M. & STEWART, J. M. (1969). Acta Cryst. B25, 336.
- AMMON, H. L., WATTS, P. H., ANDERSON, A. G., FORKEY, D. M., GRINA, L. D. & JOHNSON, Q. (1970). *Tetrahedron*, In the press.
- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOPSTRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). *Acta Cryst.* 8, 478.
- BUSING, W. R. & LEVY, H. A. (1964). Acta Cryst. 17, 142.
- Fox, G. C. & HOLMES, K. C. (1966). Acta Cryst. 20, 886.
- GOLDSTEIN, P., LADELL, J. & ABOWITZ, G. (1969). Acta Cryst. B25, 135.
- HAND, E. S. & COHEN, T. (1967). Tetrahedron, 23, 2911.
- HUGHES, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
- KARLE, J. & KARLE, I. L. (1966). Acta Cryst. 21, 849.
- LONSDALE, K. (1964). Acta Cryst. 17, 308.
- SINGH, K. & RAMASESHAN, S. (1967). Acta Cryst. 22, 323. STEWART, R. F., DAVIDSON, E. & SIMPSON, W. (1965)
- J. Chem. Phys. 42, 3175. X-ray 67: Program System for X-ray Crystallography (1967). TR-67-58 (NSG-398), Computer Science Center, Univ. of
- Maryland.